voima toolbox
Sign up
Sign in
Calculation
Calculate
Save results as spreadsheet
Calculations
Recommendations
Pressure drop in Leopold blocks
Michaud's formula
Brokaw's formula
Fuller's formula
BOD and COD removal efficiencies in aerated submerged biological filters
Wilke's multicomponent equation
Default
Default
Input data
Table
Diffusivity of A in N
m²/s
cm²/s
Molar fraction of N
-
Add row
Molar fraction of A in the mixture
-
Output data
Diffusivity coefficient of A in the mixture
m²/s
cm²/s
Description
Calculate the diffusivity of a component in a gas mixture using Wilke's equation:
D
A
,
M
=
1
∑
Y
N
′
D
A
,
N
D_{A,M} = \frac{1}{\sum{\frac{Y'_N}{D_{A, N}}}}
D
A
,
M
=
∑
D
A
,
N
Y
N
′
1
Y
N
′
=
y
N
1
−
y
A
Y_N' = \frac{y_N}{1 - y_A}
Y
N
′
=
1
−
y
A
y
N
Where:
D
A
,
N
D_{A,N}
D
A
,
N
: Gas diffusivity of
A
A
A
in the
N
N
N
-th component of the mixture;
y
N
y_N
y
N
: Molar fraction of
N
N
N
in the mixture;
Description
Calculate the diffusivity of a component in a gas mixture using Wilke's equation:
D
A
,
M
=
1
∑
Y
N
′
D
A
,
N
D_{A,M} = \frac{1}{\sum{\frac{Y'_N}{D_{A, N}}}}
D
A
,
M
=
∑
D
A
,
N
Y
N
′
1
Y
N
′
=
y
N
1
−
y
A
Y_N' = \frac{y_N}{1 - y_A}
Y
N
′
=
1
−
y
A
y
N
Where:
D
A
,
N
D_{A,N}
D
A
,
N
: Gas diffusivity of
A
A
A
in the
N
N
N
-th component of the mixture;
y
N
y_N
y
N
: Molar fraction of
N
N
N
in the mixture;
References
WELTY, James; WICKS, Charles E.; WILSON, Robert E.; RORRER, Gregory L. Fundamentals of Momentum, Heat and Mass Transfer. 5th Ed. John Wiley & Sons, 2008.