The head loss coefficient in pipe stretches is a key parameter in the design of hydraulic systems, determining the pressure loss due to internal friction in pipes. This coefficient can be calculated using different approaches, depending on the available information:
Inputs:
Parameter | Standard Units | Description |
---|---|---|
Temperature | °C | Fluid temperature |
Diameter | mm | Internal pipe diameter |
Length | m | Length of the analyzed section |
Roughness | mm | Internal roughness of the pipe |
Outputs:
Parameter | Standard Units | Description |
---|---|---|
kQ | - | Head loss coefficient |
Estimated friction factor | - | Calculated using the Churchill correlation |
Inputs:
Parameter | Standard Units | Description |
---|---|---|
Temperature | °C | Fluid temperature |
Velocity | m/s | Flow velocity |
Diameter | mm | Internal pipe diameter |
Length | m | Length of the analyzed section |
Roughness | mm | Internal roughness of the pipe |
Outputs:
Parameter | Standard Units | Description |
---|---|---|
kQ | - | Head loss coefficient |
Estimated friction factor | - | Calculated using the Churchill correlation |
Inputs:
Parameter | Standard Units | Description |
---|---|---|
Friction factor | - | Predefined friction factor value |
Diameter | mm | Internal pipe diameter |
Length | m | Length of the analyzed section |
Outputs:
Parameter | Standard Units | Description |
---|---|---|
kQ | - | Head loss coefficient |
This calculation is widely used in engineering to optimize fluid transport systems, reducing energy losses and improving hydraulic efficiency.